
Auto-complete Natural Language Queries and Convert to SQL

Sneha Kedia, Supraja Krovvidi, Priyanshi Agarwal, Laxmi Garde, Priya Bannur
University of Southern California, Los Angeles

snehaked@usc.edu, krovvidi@usc.edu, pa92514@usc.edu,
lgarde@usc.edu, bannur@usc.edu

1. Introduction

A vast amount of information is stored in
relational databases. However, accessing this
information requires extensive knowledge of
query languages used to communicate with the
database. A lot of people are inexperienced in
database querying, not everyone who wants to
retrieve data from a database knows how to
program SQL queries. We solved this problem
by developing a deep learning-based model that
converts Natural Language Queries (NLQs) to
Structured Query Language (SQL) queries.

Within a search engine, query auto-completion
can improve efficiency by predicting what the
user might want to know, presenting options to
the users based on a past or current query,
pre-entering the query into a query box as the
user types it, and suggesting the next word. The
aim is to reduce query entry time and
potentially prepare the search results in advance
of query submission. Implementing
auto-completion on NLQs can give users the
freedom to ask questions about the database in
natural language.

The proposed project aims to build an
auto-completion feature for natural language
queries and a tool to convert these NLQs to
SQL queries using NLP. Such a system that
converts the information retrieval questions to
runnable queries can come in handy, especially
in the banking and healthcare sectors. We aim
to develop a novel architecture for NLQ to SQL
conversion that has the flexibility for
implementation on relational databases and can
be fine-tuned on a specific domain for good
results. Most of the existing model works on a
database with one table. In this implementation,

we propose a model for generating SQL queries
from a natural language where we use the ACL
anthology database, consisting of 13 tables.
This model has better accuracy than the current
state of the art model on a multi-table. Our
solution is a combination of multiple Natural
Language Processing methods from traditional
heuristic-based approaches up to the most
recent breakthrough, namely BERT.

2. Related Work

The task of converting a natural language query
into SQL query is a mapping from plain simple
text to a more structured and formal language
which is used worldwide for database related
operations. The base paper for our work:
SyntaxSQLNet [1] uses the Syntax tree model
for complex and cross domain NLQ to SQL
generation tasks. The researchers of this paper
have used the WikiSQL dataset [4] to train the
Syntax tree and the Spider dataset [2] for
evaluation. They encoded the table schema
along with the encoded NLQ as input to the
SQL query generator. Whereas, we have
encoded the schema using natural number
mappings and embedded it as a part of the
model. The reason we did this is that our
dataset is small and is limited to RDBMS. So,
our schema remains the same throughout.

3. Method

3.1. Autocomplete Model
This model receives the input from the user and
automatically completes the natural language
sentences the user enters. The model returns the
top five sentences closest to the user input. The
sentences returned by the auto-complete model
make use of TF-IDF approach to quantify

mailto:snehaked@usc.edu
mailto:krovvidi@usc.edu
mailto:pa92514@usc.edu
mailto:lgarde@usc.edu
mailto:bannur@usc.edu

words taken as the input and compute a score
for each word to signify its importance in the
corpus. The TF-IDF values of every word in
the query are used to calculate the cosine
similarity, which helps in ranking the matching
words in corpus and returns relevant matches.

3.2. Recommendation Model
The processed NLQs returned by the
autocomplete model have placeholders. The
idea behind using queries with placeholders to
train this model is that we want to prevent it
from returning the same query with different
entity values. We have multiple approaches to
pick entity values to replace these placeholders.
We can add a layer of user interaction and take
these values as input from the user or we can
use a reinforcement learning model to pick
these values based on the user’s history. Here,
due to lack of adequate resources like GPU and
time, we have implemented a random value
generator.

3.3. NLQ to SQL Converter

This model accepts the final NLQs with entity
values and handles the problem of NLQ to
SQL conversion by dividing it into three major
sub-tasks, namely, the Table-column pair
prediction, link prediction, and the condition
prediction. In the first subtask, a decision tree
is used that considers a combination of POS
tagging and bigram model-based prediction at
first, and if this fails, it makes use of
fine-tuned BERT embeddings based predictors
for the Table-column pair. A similar approach
has been used for the third sub-task 'condition
prediction', wherein a relation needs to be
established between the specific columns and
the named entities. To get the named entity, we
used a combination of NER methods and POS
tagging for our database, whereas a BERT
based model is used for the condition
prediction. The link is created by running BFS
over the graph of table linkages or the database
schema which returns the shortest path in SQL
format with almost 100% accuracy.

Figure 1: Flowchart for the proposed project

4. Experiment

4.1. Dataset Setup
The existing approaches tackling the problem
generally involve training over a large dataset
([1], [2], [8]). We have trained our model on a
dataset of multi-table relational dataset with a
much smaller size as compared to the previous
ones. We created a domain-specific dataset
because it leads to a better performance than a
model trained on a general domain dataset. We
used the ACL-Anthology dataset [3]. It consists
of 13 tables and 6 foreign key columns. On
average a table contains 2 or 3 columns.
AuthID, FieldID, PaperID, KeywordID,
ConfID and AffiliationID are the foreign keys.
Each of the tables contain around 5,000 rows.

4.1.1. Creation
We started by generating around 310 unique
natural language queries (non-complex in
nature, without HAVING, GROUP BY,
ORDER BY operators) with placeholders. Each
query is upto 25 words long and depending on

up to 5 tables. This dataset is used for training
the autocomplete model.

4.1.2. Annotation
While creating each of these queries, we
manually annotated them with the number of
tables each query would need to reference.

Number of Tables Number of Queries
One Table 145
Two Tables 23

Three Tables 118
Four Tables 18
Five tables 6
Table 1: Number of tables referenced

4.1.3. Paraphrase
We paraphrase each of the 310 NLQs to
generate 310 unique pairs of NLQ-SQL
queries.

4.1.4. Augmentation
As mentioned above, we have used
placeholders instead of an entity. Entity here
means a valid entry of each column.
Placeholders are column names enclosed within
$$. One such placeholder is $PaperID$ and its
representative replacement would be any entity
of the PaperID column. We randomly chose
some 100 entities to replace each placeholder
and augment it. This returned a total of 3100
NLQ-SQL queries pairs.

4.1.5. Tools
We used an open-source python library
“querycsv” to open our csv data on a terminal
interface. This library allows the annotators to
see the schema and content of each table,
execute SQL queries, and check the returned
results. This library was extremely helpful for
the annotation of complex SQL queries and is
also used in the evaluation of the generated
SQL queries.

4.2. Baseline Methods

4.2.1. NER

The natural language sentences given by the
users contain entities such as names of places,
authors, years, etc. We use the POS tagging
approach to identify these entities. The input
natural language sentence was tokenized, with
the tokens being tagged with the type of POS.
The proper nouns were identified as entity
values; we also considered the some cases
wherein they appeared within quotes or double
quotes. We compared it with the database in
order to obtain the column values. The output
of this subtask was the named entity and
column name pair which will further be used in
the where condition space.

4.2.2. Table-Column Pairings
Once the NER sub-task returns an NLQ
without the named entity, this sentence is then
processed for identifying the column name that
appears between the SELECT and FROM parts
of the SQL query. For the column name
identification, we first used Random Forest and
XGBoost models with BERT-word Embeddings
but they gave very low accuracy.

Model Accuracy
Random Forest 57 %

XGBoost 65 %
POS Tagging with close match 80 %

POS Tagging with Lev. Distance 98 %
Table 2: Models used for table-column pairings

We found that the column names usually exist
in some or the other word forms of the column
names and are usually tagged as either nouns,
proper nouns or verbs. Hence, we identified the
column names from the sentences by
tokenizing the natural language sentence and
processing the POS tags corresponding to the
tokens. We then matched the terms with the
column names using the Levenshtein distance
ratio and those with a threshold value of 0.55
turned out to hold true for most of the
iterations.

4.2.3. Link Prediction
Many of the questions deal with data involving
two or more tables. The SQL query requires
these linkages between the table names in order
to process the query for the given information.
If the mentioned link is incorrect, the query
falls short of information to look for the
required condition. Hence, the link prediction
task is key to the SQL query structuring task,
and needs to be as accurate as possible. The
link is prepared based on the database schema,
which is represented as a graph with nodes as
the table names and the edges denoting whether
a particular table node has some column
common with another table node. This link
prediction task requires to have inner joins on
the table names in the SQL query.

4.2.4. Condition Prediction
This subtask takes a deep learning approach in
order to find a correspondence function
between the natural language sentences and the
conditions, i.e., the operator to be used in the
‘WHERE’ such as <, >, >=, <=, ==, etc. We
fine-tuned BERT-Embeddings on the dataset
and predicted the condition from the sentence
quite accurately. A similar classifier was
fine-tuned for predicting whether the query
would contain ‘COUNT’ or the column name
in between ‘SELECT’ and ‘FROM’ terms.

4.3. Evaluation Protocols
1. Exact Match: The percentage of the test set
in which the predicted SQL query is the same
as the actual SQL query.
2. Semantic Match: The percentage of the test
set in which the predicted SQL query is
semantically the same as the actual SQL query.
3. Query Distance: The exact match and the
semantic match accuracy reveal only the
percentage of exacts and not how close our
prediction is. Whereas, query distance allows
us to comment on the closeness of match based
on the number of edges between the given
columns in the BFS tree of the Schema graph.
4. Zero-result Rate: It determines the rate of
queries returning no results at all. As far as the
scope of this project is considered, zero-result

rate plays a key role as our dataset is small and
cannot provide results for queries outside the
used domain.

5. Results and Discussion

The dataset is partitioned into training and
testing sets. The query predictor scored 86.67%
exact matches and 96.67% on semantic
matches. The query distance measured upto
1.132 which is about 93.40%. Overall we
observed a satisfactory performance on the
dataset and believe that the project has
promising scope of expansion.

Figure 2: Evaluation Metrics for our model

6. Conclusion

As compared to the existing architectures, our
approach is customized for a specific database
and hence giving good accuracy. The baseline
NLQ-SQL model based on SyntaxSQLNet,
which is a syntax tree model for cross-domain
tasks, in comparison to that we encoded the
relational schema (natural numbers mapping)
and embedded it as a part of the model. The
model implemented by us offers flexibility for
implementation on databases with varied
schemas and can be fine-tuned for accurate
results. For future work, we plan to create
models that predict complex queries with
clauses like HAVING, GROUP BY, ORDER
BY and nested queries beyond 5 table linkages.

7. Team Responsibilities

1. Dataset annotation: all team members.
2. Auto-complete module

implementation: Priya Bannur,
Priyanshi Agrawal, Laxmi Garde.

3. NLQ to SQL module implementation:
Sneha Kedia, Supraja Krovvidi.

4. Integration and testing: all team
members

5. Poster work: all team members
6. Report work: all team members

8. References

1. Yu, T., Yasunaga, M., Yang, K., Zhang,
R., Wang, D., Li, Z., and Radev, D.
(2018a). SyntaxSQLNet: Syntax Tree
Networks for Complex and
Cross-DomainText-to-SQL Task. arXiv
preprint arXiv:1810.05237

2. Yu, T., Zhang, R., Yang, K., Yasunaga,
M., Wang, D., Li, Z., Ma, J., Li, I., Yao,
Q., Roman, S., Zhang, Z., and Radev,
D. R. (2018b). Spider: A large-scale
human- labeled dataset for complex
and cross-domain semantic parsing and
text-to-sql task. In EMNLP.

3. Singh, M., Dogga, P., Patro, S.,
Barnwal, D., Dutt, R., Haldar, R.,
Goyal, P., and Mukherjee, A. (2018b).
CL scholar: The ACL anthology
knowledge graph miner. CoRR,
abs/1804.05514

4. Zhong, V., Xiong, C., and Socher, R.
(2017). Seq2sql: Generating structured
queries from natural language us- ing
reinforcement learning. CoRR,
abs/1709.00103

5. Tahery, S., & Farzi, S. (2020).
Customized query auto-completion and
suggestion—A review. Information
Systems, 87, 101415.

6. Xiao, C., Qin, J., Wang, W., Ishikawa,
Y., Tsuda, K., & Sadakane, K. (2013).
Efficient error-tolerant query

autocompletion. Proceedings of the
VLDB Endowment, 6(6), 373-384.

7. TF-IDF from scratch in python on a
real-world dataset (2019):
https://towardsdatascience.com/tf-idf-f
or-document-ranking-from-scratch-in-p
ython-on-real-world-dataset-796d339a
4089

8. Wang, P., Shi, T., and Reddy, C. K.
(2019). A translate-edit model for
natural language question to sql query
generation on multi-relational
healthcare data. arXiv preprint
arXiv:1908.01839

https://arxiv.org/pdf/1810.05237.pdf
https://arxiv.org/pdf/1810.05237.pdf
https://arxiv.org/pdf/1810.05237.pdf
https://arxiv.org/pdf/1810.05237.pdf
https://arxiv.org/pdf/1810.05237.pdf
https://arxiv.org/pdf/1810.05237.pdf
https://arxiv.org/pdf/1809.08887.pdf
https://arxiv.org/pdf/1809.08887.pdf
https://arxiv.org/pdf/1809.08887.pdf
https://arxiv.org/pdf/1809.08887.pdf
https://arxiv.org/pdf/1809.08887.pdf
https://arxiv.org/pdf/1809.08887.pdf
https://arxiv.org/pdf/1809.08887.pdf
https://arxiv.org/pdf/1804.05514.pdf
https://arxiv.org/pdf/1804.05514.pdf
https://arxiv.org/pdf/1804.05514.pdf
https://arxiv.org/pdf/1804.05514.pdf
https://arxiv.org/pdf/1804.05514.pdf
https://arxiv.org/pdf/1804.05514.pdf
https://arxiv.org/pdf/1709.00103.pdf
https://arxiv.org/pdf/1709.00103.pdf
https://arxiv.org/pdf/1709.00103.pdf
https://arxiv.org/pdf/1709.00103.pdf
https://arxiv.org/pdf/1709.00103.pdf
https://www.sciencedirect.com/science/article/pii/S0306437919303072?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0306437919303072?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0306437919303072?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0306437919303072?via%3Dihub
http://www.vldb.org/pvldb/vol6/p373-xiao.pdf
http://www.vldb.org/pvldb/vol6/p373-xiao.pdf
http://www.vldb.org/pvldb/vol6/p373-xiao.pdf
http://www.vldb.org/pvldb/vol6/p373-xiao.pdf
http://www.vldb.org/pvldb/vol6/p373-xiao.pdf
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://www.arxiv-vanity.com/papers/1908.01839/
https://www.arxiv-vanity.com/papers/1908.01839/
https://www.arxiv-vanity.com/papers/1908.01839/
https://www.arxiv-vanity.com/papers/1908.01839/
https://www.arxiv-vanity.com/papers/1908.01839/
https://www.arxiv-vanity.com/papers/1908.01839/

